dev.ASCL.net

Astrophysics Source Code Library

Making codes discoverable since 1999

Welcome to the ASCL

The Astrophysics Source Code Library (ASCL) is a free online registry for source codes of interest to astronomers and astrophysicists, including solar system astronomers, and lists codes that have been used in research that has appeared in, or been submitted to, peer-reviewed publications. The ASCL is indexed by the SAO/NASA Astrophysics Data System (ADS) and Web of Science and is citable by using the unique ascl ID assigned to each code. The ascl ID can be used to link to the code entry by prefacing the number with ascl.net (i.e., ascl.net/1201.001).


Most Recently Added Codes

2019 Dec 04

[ascl:1102.023] 21cmFAST: A Fast, Semi-Numerical Simulation of the High-Redshift 21-cm Signal

21cmFAST is a powerful semi-numeric modeling tool designed to efficiently simulate the cosmological 21-cm signal. The code generates 3D realizations of evolved density, ionization, peculiar velocity, and spin temperature fields, which it then combines to compute the 21-cm brightness temperature. Although the physical processes are treated with approximate methods, the results were compared to a state-of-the-art large-scale hydrodynamic simulation, and the findings indicate good agreement on scales pertinent to the upcoming observations (>~ 1 Mpc). The power spectra from 21cmFAST agree with those generated from the numerical simulation to within 10s of percent, down to the Nyquist frequency. Results were shown from a 1 Gpc simulation which tracks the cosmic 21-cm signal down from z=250, highlighting the various interesting epochs. Depending on the desired resolution, 21cmFAST can compute a redshift realization on a single processor in just a few minutes. The code is fast, efficient, customizable and publicly available, making it a useful tool for 21-cm parameter studies.

[submitted] asdfasdftest

asdftest

[submitted] asdfasdf

asdf

2019 Nov 26

[ascl:1911.004] PypeIt: Python spectroscopic data reduction pipeline

PypeIt reduces data from echelle and low-resolution spectrometers; the code can be run in several modes of reduction that demark the level of sophistication (e.g. quick and dirty vs. MonteCarlo) and also the amount of output written to disk. It also generates numerous data products, including 1D and 2D spectra; calibration images, fits, and meta files; and quality assurance figures.

[ascl:1911.003] OpenSPH: Astrophysical SPH and N-body simulations and interactive visualization tools

OpenSPH runs hydrodynamical and N-body simulations and was written for asteroid collisions and subsequent gravitational evolution. The code offers SPH and N-body solvers with several different equations of state and material rheologies. It is written in C++14 with a modular object-oriented design, focused on extensibility and maintainability, and it can be used either as a library or as a standalone graphical program that allows to set up the problem in a convenient graphical node editor. The graphical program further allows real-time visualization of the simulation, diagnostics and tools for analysis of the results.

[ascl:1911.002] uvplot: Interferometric visibilities plotter

uvplot makes nice plots of deprojected interferometric visibilities (often called uvplots). It implements plotting functionality, handles MS tables with spectral windows with different number of channels, and can import visibilities from ASCII to MS Table. It also allows export of specific channels. uvplot can be installed inside the NRAO CASA package (ascl:1107.013).

[ascl:1911.001] PLAN: A Clump-finder for Planetesimal Formation Simulations

PLAN (PLanetesimal ANalyzer) identifies and characterizes planetesimals produced in numerical simulations of the Streaming Instability that includes particle self-gravity with code Athena (ascl:1010.014). PLAN works with the 3D particle output of Athena and finds gravitationally bound clumps robustly and efficiently. PLAN — written in C++ with OpenMP/MPI — is massively parallelized, memory-efficient, and scalable to analyze billions of particles and multiple snapshots simultaneously. The approach of PLAN is based on the dark matter halo finder HOP (ascl:1102.019), but with many customizations for planetesimal formation. PLAN can be easily adapted to analyze other object formation simulations that use Lagrangian particles (e.g., Athena++ simulations). PLAN is also equipped with a toolkit to analyze the grid-based hydro data (VTK dumps of primitive variables) from Athena, which requires the Boost MultiDimensional Array Library.

2019 Nov 21

[submitted] Network Flux Transport Demonstration

We have developed a method to efficiently simulate the dynamics of the magnetic flux in the solar network. We call this method Network Flux Transport (NFT). Implemented using a Spherical Centroidal Voronoi Tessellation (SCVT) based network model, magnetic flux is advected by photospheric plasma velocity fields according to the geometry of the SCVT model. We test NFT by simulating the magnetism of the Solar poles. The poles of the sun above 55 deg latitude are free from flux emergence from active regions or ephemeral regions. As such, they are ideal targets for a simplified simulation that relies on the strengths of the NFT model. This simulation method reproduces the magnetic and spatial distributions for the solar poles over two full solar cycles.

2019 Nov 19

[submitted] comb

The archive of source code for comb, the AT&T Bell labs singledish radio astronomy spectral line data reduction and analysis package. Comb was actively developed and maintained from the mid 1980s to ~2004 by Robert W. Wilson, Marc W. Pound, Antony A. Stark, and others. At its peak, comb was installed on several architectures at dozens of institutions worldwide in support of data reduction from many singledish telescopes including Bell Labs 7-m, NRAO 12-m, DSN network, FCRAO 14-m, Arecibo, AST/RO, SEST, BIMA, STO. It's most recent incarnation was for use with the Stratospheric Terahertz Observatory in 2011-12. A cookbook was written in 1990, available in the doc subdirectory of the git repo.

2019 Oct 31

[ascl:1910.022] qnm: Kerr quasinormal modes, separation constants, and spherical-spheroidal mixing coefficients calculator

qnm computes the Kerr quasinormal mode frequencies, angular separation constants, and spherical-spheroidal mixing coefficients. The qnm package includes a Leaver solver with the Cook-Zalutskiy spectral approach to the angular sector, and a caching mechanism to avoid repeating calculations. A large cache of low ℓ, m, n modes is available for download and can be installed with a single function call and interpolated to provide good initial guess for root-polishing at new values of spin.